

TECHNICAL DATA SHEET

PEM010

The PEM010 is a highly integrated millimeter wave transmitter that covers the 60 GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Transmitter architecture is a double conversion, sliding IF with wide bandwidth capability through the upconversion chain from baseband to carrier. The I/Q interface accepts analog baseband signals which provides for flexibility in design and applications. The baseband input optionally supports FSK/MSK modulation for non-coherent applications. The transmitter incorporates a complete waveguide interface with low-loss transition between the chip and the WR15 waveguide port. The integrated package is small and lightweight, with a simple to use multi-pin ST4 connector for power, reference clock, digital control port and baseband signals. Either of two reference clocks can be used for setting 540 MHz or 500 MHz channel spacing.

Features:

- · Complete millimeter wave transmitter
- WR-15, UG-385/U flange
- · Operates in the 57 to 66 GHz unlicensed band
- 12 dBm typical output power
- · Up to 1.8 GHz modulation bandwidth
- · I/Q analog baseband interface
- · On chip synthesizer covers 57 to 64.8 GHz
- 500 MHz or 540 MHz step size
- · 285.714 MHz clock for 500 MHz step size
- 308.572 MHz clock for 540 MHz step size
- · Power, control, signals on ST4 connector
- · Temperature sensor

Applications

- 802.11ad: 58.32, 60.48, 62.64, 64.80 GHz
- 802.11aj: 59.94, 61.02, 62.10, 63.18 GHz
- Any Channel (500 MHz or 540 MHz) 57-64.8 GHz
- Multi-Gbps Digital Communications
- · HD Video Transmission
- Millimeter Wave Radar
- Millimeter Wave Imaging
- Development for 802.11ad and 802.11aj
- · ATE Equipment for 60 GHz Manufacturing Test

TECHNICAL DATA SHEET

PEM010

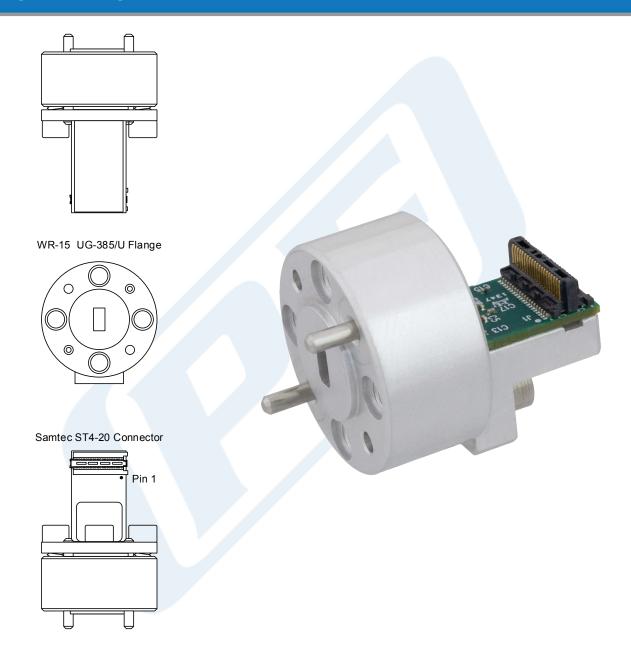
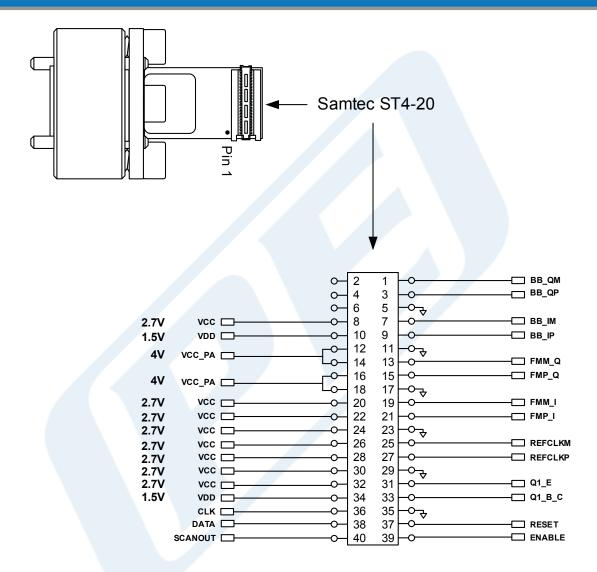


Figure 1 PEM010 Mechanical Dimensions

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: 60 GHz Transmitter (Tx) Waveguide Module PEM010


Sales@Pasternack.com • Techsupport@Pasternack.com

TECHNICAL DATA SHEET

PEM010

Mating Connector: Samtec SS4-20-3.00-L-D-K-TR

Figure 2 PEM010 Interface Connector Pinout

TECHNICAL DATA SHEET

PEM010

Table 1 Performance Specifications*

Parameter	Min	Тур	Max	Unit	Comment
Frequency Range	57.0		64.8	GHz	
Channel Spacing		540		MHz	308.571 MHz Reference
Channel Spacing		500		MHz	285.714 MHz Reference
Modulation Bandwidth		1.8		GHz	Max BW setting, double-sided at 3 dB
Gain, Max		38		dB	Gain = P _{out} - P _{in} (I/Q differential input)
Gain, Range		20		dB	
Gain, Step Size		1.25		dB	
P1dB		12		dBm	
Psat		15		dBm	
Image Rejection		34		dB	
Sideband Suppression		20		dB	
Carrier Suppression		20	\	dB	
3x LO Suppression		32		dB	
Phase Noise @ 100 kHz		-72		dBc/Hz	
Phase Noise @ 1 MHz		-86		dBc/Hz	
Phase Noise @ 10 MHz		-111		dBc/Hz	
Phase Noise @ 100 MHz		-125		dBc/Hz	
Phase Noise @ 1 GHz		-127		dBc/Hz	
PLL Loop Bandwidth		200		kHz	
I/Q Balance Phase		± 3		degrees	
I/Q Balance Amplitude		± 1		dB	

*Test Conditions:

Reference Frequency 308.571 MHz

Temperature 25°C

I/Q Input Signal Level Referenced to -31 dBm x4 at each 50 ohm input port

IF Bandwidth M

Output Referenced to WR15 output port

TECHNICAL DATA SHEET

PEM010

Table 2 Recommended Operating Conditions

Description	Name	ST4 Pin #	Min	Тур	Max	Unit
	Vcc	8,22,24,26, 28,30,32	2.565	2.7	2.835	V
Power Supplies	Vdd	10,34	1.425	1.5	1.575	V
	Vcc_PA	12,14,16,18	3.9	4.0	4.1	V
Serial Control Port	DATA	38	A			
Logic High	CLOCK	36				
	ENABLE	39	1.0	1.3	1.575	V
	RESET	37				
	SCANOUT	40				
Serial Control Port	DATA	38				
Logic Low	CLOCK	36				V
	ENABLE	39	05	0.1	0.33	
	RESET	37				
	SCANOUT	40				
Serial Control Port Speed					100	MHz
Reference Clock ¹	REFCLKM	25	-5	0	3	dBm
Reference Clock	REFCLKP	27				
	BB_QM	1		25	400	mVPP
I and Q Baseband ²	BB_QP	3	5			
Tana Q Basebana	BB_IM	7	5		100	
	BB_QP	9				
	FMM_Q	13				mVPP
FM/MSK Baseband ²	FMP_Q	15	000	500		
T WINNOR Dasebaria	FMM_I	19	200	500	750	
	FMP_I	21				
T	Q1_E	31				
Temperature Sensor ³	Q1_B_C	33				
Vcc 2.7V Supply Current	Icc			193		mA
Vdd 1.5V Supply Current	Idd			8		mA
Vcc_PA 4V Supply Current	I _{PA}			66		mA
Operating Temperature	T _A		-40		85	°C

¹ Reference clock power level specified at 100 ohms differential

 $^{^2}$ Baseband voltage at each of the individual baseband inputs (I +/-, Q +/-, FMI +/-, FMQ +/-) 3 Temperature sensor is a 2N3904 NPN transistor die connected as a diode junction

TECHNICAL DATA SHEET

PEM010

Table 3 Absolute Maximum Ratings

Description	Name	ST4 Pin #	MAX
Power Supplies	Vcc	8,22,24,26, 28,30,32	2.85 V
Power Supplies	Vdd	10,34	1.6 V
	Vcc_PA	12,14,16,18	4.2 V
Serial Control Port	DATA	38	
Logic High	CLOCK	36	
	ENABLE	39	1.575 V
	RESET ¹	37	
	SCANOUT	40	
Serial Control Port	DATA	38	
Logic Low	CLOCK	36	
	ENABLE	39	05 V
	RESET ¹	37	
	SCANOUT	40	
Reference Clock	REFCLKM	25	5 dBm
Reference Clock	REFCLKP	27	
	BB_QM	1	
I and Q Baseband	BB_QP	3	750 mVPP
rand Q baseband	BB_IM	7	700 111 11
	BB_QP	9	
	FMM_Q	13	
FM, MSK Baseband	FMP_Q	15	750 mVPP
FIVI, IVISK Baseballu	FMM_I	19	700 111 11
	FMP_I	21	
GND		5,11,17,23,29,35	± 50 mV
Power Dissipation	P _D		1100 mW
Storage Temperature	Ts		-55 to 150 C
Operating Temperature	T _A		-40 to 85 C

¹ Assertion of RESET, active high, asynchronously resets all registers

TECHNICAL DATA SHEET

PEM010

Transmitter Architecture

The PEM010 transmitter uses a double conversion superheterodyne architecture with a sliding IF. The IF frequency is at 1/7 the RF carrier frequency, and the VCO is at 2/7 the RF carrier frequency. The LO is 3x the VCO frequency. The LO and IF are generated from a built-in synthesizer that has a step size at the RF carrier frequency of either 500 MHz or 540 MHz depending upon which reference clock frequency is used. The 540 MHz step size uses a 308.571 MHz reference, and the 500 MHz step uses a 285.714 MHz frequency. The IEEE channels for 802.11ad and 802.11aj are supported when the 540 MHz step size is used. I and Q analog baseband signals are upconverted to the IF frequency at the input mixers. The IF signal is filtered with a variable gain amplifier and filter with approximately 20 dB range, which is then mixed with the LO. A notch filter attenuates the image frequency. The output of the mixer is fed to the PA stage which is coupled to the low-loss waveguide transition. There are optional FSK/MSK baseband data inputs for non-coherent modulation applications. The overall phase noise and I/Q balance specifications are sufficient for up to 16 QAM operation. Configuration and settings are controlled through a digital serial interface port. The block diagram below shows the various stages and circuits in the module.

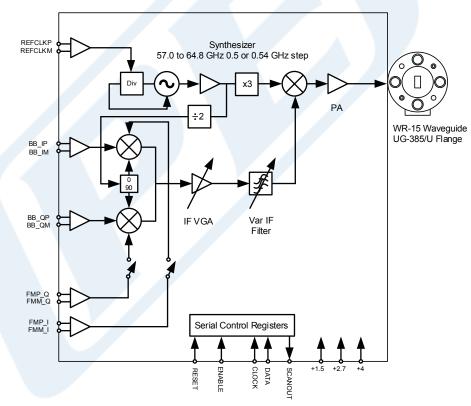


Figure 3 PEM010 Block Diagram

TECHNICAL DATA SHEET

PEM010

Synthesizer Design

The PEM010 transmitter uses a double conversion superheterodyne architecture with a sliding IF. The IF frequency is at 1/7 the RF carrier frequency, and the VCO is at 2/7 the RF carrier frequency. The LO is 3x the VCO frequency.

The tables below show the RF carrier, IF, VCO and LO for the frequency range from 57 GHz to 64.80 GHz at 540 MHz and 500 MHz channel spacing respectively. The reference clock for the synthesizer at 540 MHz spacing is 308.571 MHz; for 500 MHz spacing it is 285.714 MHz. The loop bandwidth of the synthesizer phase lock loop is 200 kHz.

540 MHz Spacing

f _{RF}	IF	VCO	LO
57.24	8.177	16.354	49.063
57.78	8.254	16.509	49.526
58.32	8.331	16.663	49.989
58.86	8.409	16.817	50.451
59.40	8.486	16.971	50.914
59.94	8.563	17.126	51.377
60.48	8.640	17.280	51.840
61.02	8.717	17.434	52.303
61.56	8.794	17.589	52.766
62.10	8.871	17.743	53.229
62.64	8.949	17.897	53.691
63.18	9.026	18.051	54.154
63.72	9.103	18.206	54.617
64.26	9.180	18.360	55.080
64.80	9.257	18.514	55.543

500 MHz Spacing

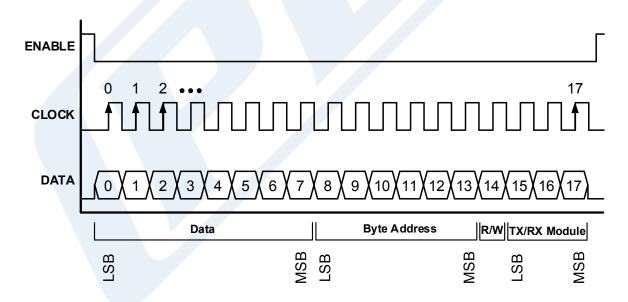
f _{RF}	IF	VCO	LO
57.00	8.143	16.286	48.857
57.50	8.214	16.429	49.286
58.00	8.286	16.571	49.714
58.50	8.357	16.714	50.143
59.00	8.429	16.857	50.571
59.50	8.500	17.000	51.000
60.00	8.571	17.413	51.429
60.50	8.643	17.286	51.587
61.00	8.714	17.429	52.286
61.50	8.786	17.571	52.714
62.00	8.857	17.714	53.143
62.50	8.929	18.587	53.571
63.00	9.000	18.000	54.000
63.50	9.071	18.143	54.429
64.00	9.143	18.286	54.857

Figure 4 Synthesizer RF, IF, VCO and LO Frequencies

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: 60 GHz Transmitter (Tx) Waveguide Module PEM010

Sales@Pasternack.com • Techsupport@Pasternack.com

TECHNICAL DATA SHEET


PEM010

Digital Control Registers and Serial Interface Protocol - Write Operation

The PEM010 is configured via the serial control port which transfers data synchronously to or from (write or read operation) a register location. Register locations are organized into 16, byte-wide (8-bit) locations. The register locations are written to or read from one byte at a time as shown in Figures 5 and 6 respectively. Figure 5 shows the sequence of the digital control signals for the ENABLE, CLOCK and DATA input pins (ST4 connector, pins 39, 36 and 38 respectively) to write a single byte into the control register. After the ENABLE signal goes low, the first of 18 data bits (bit 0) is placed on the data pin, and 2 ns or more after the DATA signal stabilizes, the CLOCK signal goes high which clocks in data bit 0. The DATA signal must remain stable for at least 2 ns after the rising edge of the CLOCK. The signal levels are 1.5V CMOS, 50 k Ω impedance, with a maximum clock rate of 100 MHz.

A write operation requires an 18 bit field associated with 18 clock pulses as shown in Figure 5. The 18 bit field contains the 8-bit data (LSB is clocked in first), followed by the byte address (BYTE 0 through BYTE 15, 000000 to 001111, LSB first, only 4 of the 6 bits are used with the two MSBs set to 0), the read/write (R/W) bit (write = 1), and the module address which distinguishes between a transmitter module and receiver module (for the V60RXWG3 receiver, RX module = 111).

After clock pulse 17 (18 total pulses), the ENABLE signal is returned to a high state to load the register byte into the module. The CLOCK signal must be stable in the low state at least 2 ns prior to the rising edge of the ENABLE signal.

Figure 5 Write Operation Timing Diagram

TECHNICAL DATA SHEET

PEM010

Digital Control Registers and Serial Interface Protocol - Read Operation

Figure 6 shows the sequence of control signals at the ENABLE, CLOCK and DATA pins to read a single byte at a register location. A read operation requires a 27 bit field: The first 18 bits are used to clock in the bits on the DATA input pin. The first 8 bits during a read operation are "don't care" bits as they are placeholders for the 8-bit byte data which would be present during a write operation. The following 10 bits are composed of the byte address (BYTE 0 through BYTE 15, 000000 to 001111, LSB first, only 4 of the 6 bits are used with the two MSBs set to 0), the read/write (R/W) bit (read = 0), and the module address which distinguishes between a transmitter module and receiver module (for the PEM010 transmitter, TX module = 110, LSB first).

After clock pulse 17 (18 total pulses), the ENABLE signal is returned to a high state while the clock signal is low, then a single clock pulse (pulse 18) is sent during the ENABLE signal high period. The ENABLE signal then returns to the low state while the CLOCK signal is low. At each of the subsequent 8 CLOCK pulses, the 8-bit data from the specified register location is available at the SCANOUT pin, LSB first. Note that the DATA signal must remain in the low state during the period from clock pulse 18 through 26. Following clock pulse 26, the ENABLE signal goes high while the CLOCK signal is low to end the read operation.

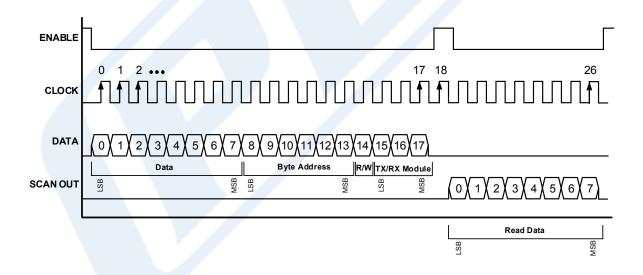


Figure 6 Read Operation Timing Diagram

TECHNICAL DATA SHEET

PEM010

Table 4.1 Register Byte Functions

Bit	Name	Function	
BYTI	E 0		
7	pa_pwrdn	Active high to power down PA circuits not controlled by bit <6>	
6	pa_pwrdn_fast	Active high to power down PA core in < 1 us	
5	mixer_pwrdn	Active high to power down IF to RF mixer	
4	divider_pwrdn	Active high to power down local oscillator divider	
3	if_bgmux_pwrdn	Active high to power down one of three on-chip refs (IF) and associated mux	
2	if_mixer_pwrdn	Active high to power down baseband to IF mixers	
1	driver_pwrdn	Active high to power down PA predriver	
0	ifvga_pwrdn	Active high to power down IF variable gain amplifier	
BYTI	Ē 1		
7	ipc_pwrdn	Active high to power down module current reference generator	
6	tripler_pwrdn	Active high to power down frequency tripler	
5	ifvga_q_cntrl_2	IF Sites O is the VOA and life or hite of Oo and so is	
4	ifvga_q_cntrl_1	IF filter Q in the VGA amplifier; bits <2:0> = 000 for highest Q and gain	
3	ifvga_q_cntrl_0	For reduced Q and wider bandwidth, bits <2:0> = 001,100,101,111 in sequence	
2	not used		
1	not used	Not used; bits <2:0> = xxx	
0	not used		
BYTI	Ē 2		
7	fdb_11		
6	fdb_10	Decembed hits (7/4) = 4444 for personal an arctic p	
5	fdb_9	Reserved; bits <7:4> = 1111 for normal operation	
4	fdb_8		
3	pa_sel_vgbs_3		
2	pa_sel_vgbs_2	PA output transistors base voltage regulator;	
1	pa_sel_vgbs_1	bits <3:0> = 0000 for normal operation	
0	pa_sel_vgbs_0		

TECHNICAL DATA SHEET

PEM010

Table 4.2 Register Byte Functions

Bit	Name	Function			
BYTE	∃ 3				
7	fdb_7				
6	fdb_6				
5	fdb_5	Reserved: bits <7:4> = 0001 for normal operation			
4	fdb_4				
3	fdb_3				
2	fdb_2				
1	fdb_1	Reserved: bits <3:0> = 1111 for normal operation			
0	fdb_0				
BYTE	<u> 4</u>				
7	pa_sel_vref_3				
6	pa_sel_vref_2	DA subjut translators him surrents hits 27/45 = 0044 for normal or cration			
5	pa_sel_vref_1	PA output transistors bias current; bits <7:4> = 0011 for normal operation			
4	pa_sel_vref_0				
3	driver_bias_2				
2	driver_bias_1	PA predriver bias current; bits <3:1> = 111 for normal operation			
1	driver_bias_0				
0	driver_bias2_2	PA predriver2 bias current; bit <0> = 1 for normal operation			
BYTE	Ē 5				
7	not used				
6	not used	Not used; bits <7:4> = xxxx			
5	not used	INOLUSEU, DIES T. 47 - XXXX			
4	not used				
3	bg_monitor_set	Reserved: bits <3:2> = 01 for normal operation			
2	if_refsel	Treserved. Dits \3.27 = 01 for normal operation			
1	enable_fm	Active high to enable FM/MSK modulator inputs; bit <1> = 0 for normal I/Q			
0	not used	Not used; bit <0> = x			

TECHNICAL DATA SHEET

PEM010

Table 4.3 Register Byte Functions

Bit	Name	Function	
BYT			
7	ifvga_bias_3		
6	ifvga_bias_2		
5	ifvga_bias_1	IF VGA bias ; bits <7:4> = 1000 for normal operation	
4	ifvga_bias_0		
3	ifvga_tune_4		
2	ifvga_tune_3		
1	ifvga_tune_2	IF VGA filter ; bits <3:0> = 1111 for normal operation	
0	ifvga_tune_1		
BYT	Ē 7		
7	ifvga_vga_adj_3		
6	ifvga_vga_adj_2	IF VGA gain control bits; bits <7:4> = 0000 highest gain, 1111 lowest gain	
5	ifvga_vga_adj_1	Attenuation 1.25 dB/step, ≈ 20 dB maximum	
4	ifvga_vga_adj_0		
3	rfmix_tune_3		
2	rfmix_tune_2	IF filter alignment in the RF mixer; bits <3:0> = 1111 for normal operation	
1	rfmix_tune_1	If little alignment in the IXI mixer, bits <5.02 = 1111 for normal operation	
0	rfmix_tune_0		
BYT	E 8		
7	tripler_bias_13		
6	tripler_bias_12		
5	tripler_bias_11		
4	tripler_bias_10	Frequency tripler bias (upper 8 bit portion): bits <7:0> = 10111111 default	
3	tripler_bias_9	Trequency upper bias (upper 6 bit portion). bits <7.07 - 10111111 default	
2	tripler_bias_8		
1	tripler_bias_7		
0	tripler_bias_6		

TECHNICAL DATA SHEET

PEM010

Table 4.4 Register Byte Functions

Bit	Name	Function				
BYTE	BYTE 9					
7	tripler_bias_5					
6	tripler_bias_4					
5	tripler_bias_3	Frequency tripler bias (lower 6 bit portion): bits <7:2> = 011011 default				
4	tripler_bias_2	Frequency inpler bias (lower 6 bit portion). bits <7.2> = 011011 default				
3	tripler_bias_1					
2	tripler_bias_0					
1	driver_bias2_1	PA predriver2 bias current; bits <1:0> = 11 for normal operation				
0	driver_bias2_0	PA predriverz bias current, bits < 1.02 – 11 for normal operation				
BYTE	1 0					
7	rdacin_5					
6	rdacin_4					
5	rdacin_3	VCO amplitude DAC; bits<7:2> = 111100 for normal operation				
4	rdacin_2	1 VOO amplitude DAO, bits 17.22 = 111100 for frontial operation				
3	rdacin_1					
2	rdacin_0					
1	synreset	Synthesizer reset; bit <1> = 0 for normal operation				
0	divratio_4	Synthesizer divider ratio bit 4 (see Tables 5.1 and 5.2)				
BYTE	E 11					
7	divratio_3					
6	divratio_2	Synthesizer divider ratio bits 3:0 (see Tables 5.1 and 5.2)				
5	divratio_1	Synthesizer divider ratio bits 5.0 (see rables 5.1 and 5.2)				
4	divratio_0					
3	band_2					
2	band_1	VCO band tuning bits 2:0 (see Tables 5.1 and 5.2)				
1	band_0					
0	rfseldiv	Reserved; bit <0> = 1 for normal operation				

TECHNICAL DATA SHEET

PEM010

Table 4.5 Register Byte Functions

Bit	Name	Function
BYTE	12	
7	cpbias_2	
6	cpbias_1	Synthesizer charge pump bias; bits <7:5> = 010 for normal operation
5	cpbias_0	
4	vrsel_3	
3	vrsel_2	Synthesizer lock detector window width; bits <4:1> = 1111 for normal operation
2	vrsel_1	Synthesizer lock detector window width, bits <4.1> = 1111 for normal operation
1	vrsel_0	
0	refselvco	Reserved; bit <0> = 1 for normal operation
BYTE	Ē 13	
7	muxref	Reserved; bit <7> = 1 for normal operation
6	div_4	Enable synthesizer divider bit 4; bit <6> = 0 for normal operation
5	en_dc	Synthesizer reference input DC coupling; bit <5> = 0 for normal operation
4	ini	Reserved; bit <4> = 0 for normal operation
3	pd_div_15	Active high to power down 1.5V circuits in synthesizer divider
2	pd_div_27	Active high to power down 2.7V circuits in synthesizer divider
1	pd_qp	Active high to power down synthesizer charge pump
0	pd_vco	Active high to power down synthesizer VCO
BYTE	≣ 14	
7	pd_cal	Active high to power down VCO calibration; bit <7> = 0 for normal operation
6	muxout	Multiplexer control for ability to read byte 15; bit <6> = 1 for normal operation
5	pdcalc15	Active high to power down VCO ALC; bit <5> = 1 for normal operation
4	pload	Active high to load adjustment of VCO; bit <4> = 1 for normal operation
3	wide_1	Control for VCO ALC loop; bits <3:2> = 01 for normal operation
2	wide_2	Control for 1000 AEO 100p, bits 10.27 - 01 for Horitial operation
1	slew_1	Slew rate control of sub-integer N divider; bits <1:0> = 10 for normal operation
0	slew_0	Siew fate control of Sub-integer in divider, bits < 1.07 - 10 for normal operation

TECHNICAL DATA SHEET

PEM010

Table 4.6 Register Byte Functions

Bit	Name	Function		
BYTE	Ē 15			
7	comp_p	Synthesizer lock indication (read only): bits <7:6> = 01 locked,		
6	comp_n	= 11 above window, = 00 below window, = 10 disallowed indicating error		
5	rdacmsb_2			
4	rdacmsb_1			
3	rdacmsb_0	Reserved (read only)		
2	rdacmux_0			
1	rdacmux_1			
0	rdacmux_2			

Table 5.1 540 MHz Channels

Channel	Divider	Band ¹	Byte 10	Byte 11
57.24	10101	001	11110001	01010011
57.78	10100	001	11110001	01000011
58.32	10011	010	11110001	00110101
58.86	10010	010	11110001	00100101
59.40	10001	011	11110001	00010111
59.94	10000	011	11110001	00000111
60.48	11111	100	11110001	11111001
61.02	00000	100	11110000	00001001
61.56	00001	101	11110000	00011011
62.10	00010	101	11110000	00101011
62.64	00011	110	11110000	00111101
63.18	00100	110	11110000	01001101
63.72	00101	111	11110000	01011111
64.26 ²	00110	111	11110000	01101111
64.80 ²	00111	111	11110000	01111111

Reference: 308.571 MHz

Note 1: Band setting typical, may change from module to module and temperature.

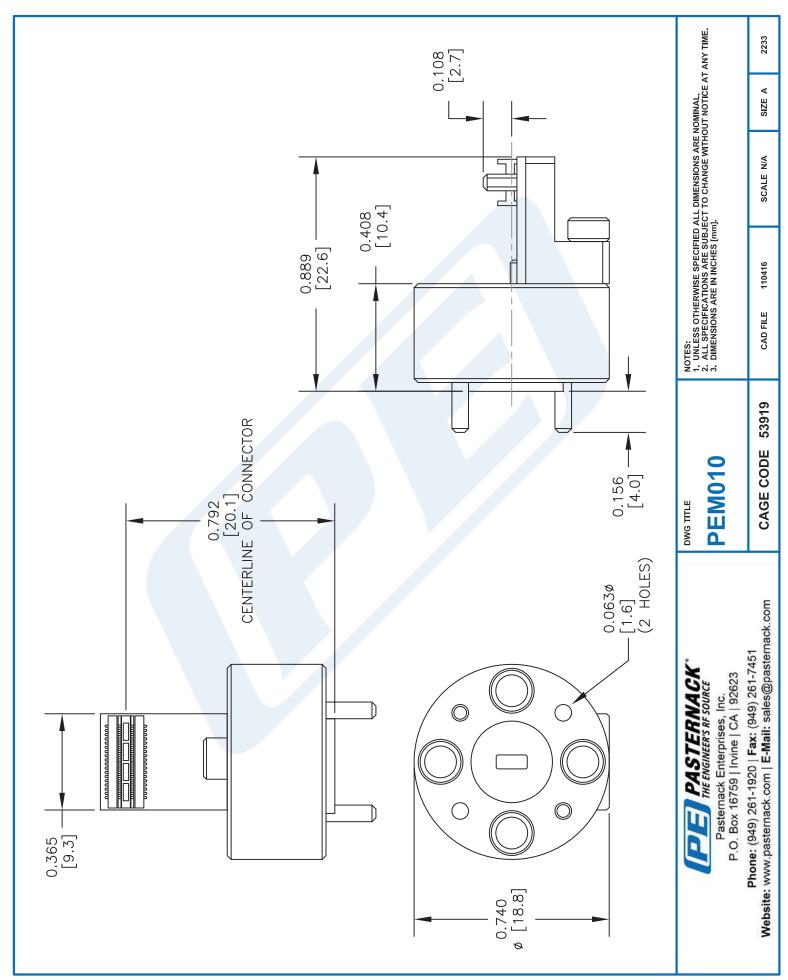
Note 2: Operation above 64 GHz not guaranteed over full operating temperature range.

TECHNICAL DATA SHEET

PEM010

Table 5.1 500 MHz Channels

Channel	Divider	Band ¹	Byte 10	Byte 11
57.0	00001	000	11110000	00010001
57.5	00010	000	11110000	00100001
58.0	00011	001	11110000	00110011
58.5	00100	001	11110000	01000011
59.0	00101	010	11110000	01010101
59.5	00110	010	11110000	01100101
60.0	00111	011	11110000	01110111
60.5	01000	011	11110000	10000111
61.0	01001	100	11110000	10011001
61.5	01010	100	11110000	10101001
62.0	01011	101	11110000	10111011
62.5	01100	101	11110000	11001011
63.0	01101	110	11110000	11011101
63.5	01110	110	11110000	11101101
64.0	01111	111	11110000	11111111


Reference: 285.714 MHz

Note 1: Band setting typical, may change from module to module and temperature.

60 GHz Transmitter (Tx) Waveguide Module from Pasternack Enterprises has same day shipment for domestic and International orders. Our RF, microwave and fiber optic products maintain a 99% availability and are part of the broadest selection in the industry.

Click the following link (or enter part number in "SEARCH" on website) to obtain additional part information including price, inventory and certifications: 60 GHz Transmitter (Tx) Waveguide Module PEM010

URL: http://www.pasternack.com/60-ghz-transmitter-module-PEM010-p.aspx

